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Abstract: With the continued expansion of large language models in multilingual tasks, achieving efficient and 

robust instruction alignment has become a key technical challenge in the field of natural language processing. 

This study proposes a lightweight instruction fine-tuning framework that combines cross-lingual transfer 

learning with a hierarchical prompt distillation strategy. The framework first performs initial optimization on 

the model using high-quality English instruction data. Then, through a carefully designed hierarchical prompt 

structure, knowledge is distilled and transferred to models in low-resource languages. The goal is to ensure 

consistency in instruction responses and accurate semantic alignment in multilingual settings. Experiments on 

the XGLUE and FLORES-101 benchmarks show that the proposed method achieves an average alignment 

accuracy of 92.3% across 12 languages, while reducing training costs by 34% compared to reinforcement 

learning-based methods. 
Keywords: Large language models; Instruction fine-tuning; Multilingual alignment; Prompt distillation; Cross-

lingual transfer.  

 

1. Introduction 
 

In the vibrant and rapidly developing field of Natural Language Processing (NLP), Large Language 

Models (LLMs) have achieved milestone breakthroughs in recent years [1]. GPT-3, released by OpenAI, 

possesses 175 billion parameters and has demonstrated outstanding performance in language 

generation tasks [2]. Based on the sequence-to-sequence model architecture in language generation 

theory, GPT-3 generates logically coherent, semantically rich, and grammatically correct text by 

learning from large volumes of textual data [3]. This capability has brought a significant leap forward 

for intelligent writing assistance tools [4]. Empirical studies have shown that after adopting GPT-3 to 

support content creation, some enterprises improved content production efficiency by 30% to 50%. GPT-

4 further expands the breadth and depth of knowledge coverage [5]. It shows stronger performance in 

complex reasoning tasks, including joint reasoning based on multimodal information and accurate 

understanding of ambiguous semantics [6]. These improvements have significantly advanced the 

development of intelligent customer service systems toward more precise interaction [7]. Meanwhile, 

Google's BERT model introduced a new pre-training paradigm. By performing self-supervised learning 
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tasks—Masked Language Modeling (MLM) and Next Sentence Prediction (NSP)—on a large-scale 

corpus of approximately 3.3 billion words, BERT effectively captures contextual semantic information 

[8]. It greatly improves performance in monolingual tasks such as text classification and sentiment 

analysis [9]. The underlying principle is that the language representations learned during pre-training 

can better adapt to downstream tasks, thereby reducing the learning difficulty for task-specific models 

[10]. This result has notably optimized application scenarios such as information retrieval and 

document filtering. 

 

The accelerated process of globalization has intensified exchanges among countries in economic, 

cultural and academic domains [11]. As a result, the demand for information interaction among 

speakers of different languages has surged significantly. From a commercial perspective, multinational 

enterprises aim to enhance the global customer service experience by building intelligent assistants that 

can seamlessly respond to customer needs in various languages [12]. This approach is intended to 

improve customer satisfaction and strengthen their competitiveness in international markets. 

According to a forecast by the market research agency Statista, the global multilingual customer service 

market is projected to reach USD 50 billion by 2025, with a compound annual growth rate exceeding 

15%. In the academic field, when research institutions undertake global projects, they often face the 

challenge of handling academic literature written in multiple languages [13,14]. Multilingual large 

language models can support the discovery of cross-lingual knowledge connections, thereby facilitating 

the wide dissemination and deep integration of scientific findings across different regions [15]. This 

plays a significant role in advancing the globalization of scientific research. In online education, 

platforms need to meet the personalized needs of learners from diverse linguistic backgrounds. There 

is an urgent need for multilingual large language models to provide services such as content 

recommendation, intelligent tutoring, and translation that match users' language habits [16,17]. These 

services are essential for breaking language barriers and promoting the global sharing of educational 

resources. Against this backdrop, multilingual large language models have become a key focus in NLP 

research [18]. Among their core capabilities, multilingual instruction alignment is gaining increasing 

attention. 

 

Multilingual instruction alignment aims to equip models with the ability to accurately interpret and 

efficiently execute instructions from users in different languages, while maintaining stable and high-

level performance across linguistic environments [19]. For example, in the context of customer service 

for cross-border e-commerce, the model must correctly understand the semantic structures of the French 

instruction “Je voudrais annuler ma commande” and the Spanish instruction “Quiero cancelar mi 

pedido.” It must then identify the users' intent and generate consistent and correct responses based on 

predefined business logic. This process is essential for promoting cross-lingual information flow, 

eliminating language barriers and advancing global collaboration across domains [20]. The core 

challenge lies in achieving accurate semantic mapping and execution of instructions in different 

languages within a shared semantic space. 

 

Traditional methods for multilingual instruction alignment typically adopt a strategy of directly fine-

tuning large language models using large-scale multilingual data [21]. However, this approach faces 

multiple serious challenges in practical applications. In low-resource language settings, the absence of 

strong language community support and limited digitized materials results in a severe shortage of high-

quality annotated data [22]. For some African tribal languages and Pacific Island languages, the amount 

of labeled data is only about one-thousandth—or even less—compared to that of high-resource 

languages like English. This data sparsity problem significantly limits the model's ability to learn unique 

linguistic features and diverse instruction patterns. According to data-driven theory in machine 

learning, insufficient data makes it difficult to build accurate language models [23]. This leads to 
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frequent misinterpretations and incorrect responses during instruction execution, resulting in a sharp 

decline in performance. In addition, collecting, organizing and annotating large multilingual datasets 

requires a considerable number of language experts and consumes a large amount of time, making the 

labor cost extremely high [24]. The data preparation process also involves complex linguistic expertise 

and detailed text processing, which demands extensive resources. Furthermore, the prolonged training 

process based on large datasets imposes heavy requirements on hardware, including GPU computing 

power and memory capacity [25]. This not only increases the cost of hardware acquisition but also limits 

the training speed and iteration efficiency, thereby hindering the rapid deployment and optimization 

of the model in real-world scenarios. 

 

To overcome these long-standing barriers to the development of multilingual large language models, 

this paper proposes an innovative method based on prompt distillation, combined with cross-lingual 

transfer learning. As a form of knowledge transfer, prompt distillation employs a carefully designed 

hierarchical prompt structure to gradually and efficiently transfer instruction knowledge and semantic 

information from high-resource languages—such as English, which benefits from abundant internet 

content, well-annotated datasets, and extensive linguistic research—into low-resource language models. 

Based on the teacher-student paradigm in knowledge distillation theory, this approach significantly 

enhances the model’s understanding accuracy and execution efficiency in complex multilingual 

environments. At the same time, by reducing dependence on large-scale low-quality data, it improves 

training efficiency and lowers cost, offering a new pathway for advancing multilingual large language 

models. 

 

2. Method  
 

2.1 Overall Framework 

 

The multilingual instruction alignment framework proposed in this study, referred to as Multi-Lingual 

Instruction Alignment via Prompt Distillation (ML-IPD), consists of three core components: a cross-

lingual pretrained model, a prompt distillation module, and a multilingual instruction fine-tuning 

module. First, the cross-lingual pretrained model XLM-RoBERTa is employed. It is trained on over 1TB 

of large-scale multilingual text data from more than 100 languages, allowing the model to learn general 

semantic representations across languages. Built on the Transformer architecture, XLM-RoBERTa 

integrates vocabulary, grammar and semantic information from various languages through a self-

attention mechanism [26,27]. This enables the construction of a unified semantic space. Then, the model 

is initially fine-tuned using high-quality English instruction data, resulting in the English Instruction 

Model (E-IM). This step equips the model with a basic ability to understand and carry out instructions. 

Following the principle of supervised learning, the model parameters are updated by minimizing the 

loss function between the model output and the reference instruction response. Next, the prompt 

distillation module transfers knowledge from E-IM to other language models. This module adopts a 

hierarchical prompt structure, consisting of Task-Level Prompts (T-P) and Language-Level Prompts (L-

P), which are responsible for transferring task-related and language-specific knowledge, respectively. 

The task-level prompts are designed based on the characteristics of different NLP tasks, while the 

language-level prompts focus on the unique linguistic features of the target language [27]. Finally, a 

small amount of instruction data in the target language is used to fine-tune the distilled model, resulting 

in the Multi-Lingual Instruction-Aligned Model (ML-IAM). This enables the model to accurately 

understand and execute user instructions in different languages. The fine-tuning process further adjusts 

model parameters for the target language, improving its adaptability to language-specific instructions. 

 

2.2 Cross-Lingual Pretrained Model 
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XLM-RoBERTa serves as the base cross-lingual pretrained model. Through pretraining tasks such as 

Masked Language Modeling (MLM) and Next Sentence Prediction (NSP), it effectively captures 

semantic similarities across different languages and learns grammatical, semantic and discourse-level 

features of language [28]. In the MLM task, the model learns local semantic representations by 

predicting masked words within a sentence. In the NSP task, it determines the sequential relationship 

between two sentences, thereby acquiring knowledge of discourse structure. 

 

In the multilingual instruction alignment task, XLM-RoBERTa provides a shared semantic 

representation space for texts in various languages [29]. For instance, given the English instruction 

“Translate the following sentence to French: ‘Hello, how are you?’” and the corresponding French 

instruction “Traduisez la phrase suivante en français : ‘Bonjour, comment ça va?’”, XLM-RoBERTa maps 

both instructions into a similar semantic vector space based on its learned cross-lingual representations. 

This mapping lays the foundation for instruction alignment. The ability to perform such alignment relies 

on the model’s deep understanding of vocabulary and meaning across languages, which is achieved 

through the self-attention mechanism that enables semantic alignment of multilingual texts in the 

representation space. 

 

2.3 Prompt Distillation Module 

 

The prompt distillation module is essential for enabling multilingual knowledge transfer. The Task-

Level Prompt (T-P) is intended to convey instruction patterns specific to tasks such as text classification, 

translation and question answering [30]. For example, the T-P for a text classification task may be: 

“Classify the following text into one of the categories: [category list]”. During the distillation process, 

the output of the English Instruction Model (E-IM) on English instruction data with T-P is used as the 

teacher signal to guide the target language model in acquiring task-related knowledge. This process 

follows the soft label transfer principle in knowledge distillation, where the teacher model provides 

richer and more informative learning signals for the student model. 

 

The Language-Level Prompt (L-P) focuses on language-specific information. For instance, an L-P 

designed for French may include prompts that highlight vocabulary and grammatical structures unique 

to the French language [31]. By combining T-P and L-P into a complete prompt input, the knowledge 

from E-IM is transferred into the target language model. The distillation is performed by minimizing 

the output difference between the teacher model (E-IM) and the student model (target language model) 

under the same prompt input. The optimization is carried out using the Mean Squared Error (MSE) loss 

function:  

 𝐿distill =
1

𝑁
∑ ‖𝑁

𝑖=1 𝑦𝑡𝑒𝑎𝑐ℎ𝑒𝑟
𝑖 − 𝑦𝑠𝑡𝑢𝑑𝑒𝑛𝑡

𝑖 ‖2  

Where, 𝑁 is the number of samples, and 𝑦teacher
𝑖 and 𝑦student

𝑖  refer to the outputs of the teacher model 

and the student model on the 𝑖-th sample, respectively. This loss function quantifies the difference 

between the outputs of the teacher and the student models. The parameters of the student model are 

updated through the backpropagation algorithm, thereby enabling effective knowledge distillation. 

 

2.4 Multilingual Instruction Fine-Tuning Module 

 

After completing prompt distillation, a small amount of instruction data in the target language is used 

to fine-tune the distilled model, in order to further improve its instruction alignment performance in 

that language. The fine-tuning data can be obtained either through manual annotation or by selecting 

from existing multilingual datasets. Manually annotated data ensures high quality and accuracy, while 
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selection from existing datasets allows efficient use of available data resources [32]. 

 

The fine-tuning process uses the standard cross-entropy loss function:  

 𝐿finetune = −
1

𝑁
∑ ∑ 𝑦𝑡𝑟𝑢𝑒

𝑖𝑗𝐶
𝑗=1

𝑁
𝑖=1 log( 𝑦𝑝𝑟𝑒𝑑

𝑖𝑗
)  

Where, 𝐶  denotes the number of classes (in generation tasks, 𝐶  refers to the vocabulary size), 𝑦true
𝑖𝑗  

represents the true label of the 𝑖-th sample, and 𝑦pred
𝑖𝑗  represents the probability distribution predicted 

by the model. Through this module, the model can adjust and optimize the distilled knowledge based 

on the characteristics of the target language and a small amount of labeled data, thereby improving its 

adaptability to instruction alignment tasks in different languages. The cross-entropy loss function 

shows good performance in measuring the difference between the predicted output and the true label, 

and it effectively guides the updating of model parameters. 

 

3. Experiments 
 

3.1 Experimental Setup 

 

In this study, the XGLUE and FLORES-101 benchmark datasets are employed to evaluate the 

performance of the proposed multilingual instruction alignment method. XGLUE comprises 

approximately 50GB of multilingual data across 12 languages and includes tasks such as text 

classification and natural language inference. FLORES-101, with over 200GB of data covering 101 

languages, is primarily used for machine translation. Instruction-format datasets are constructed from 

both benchmarks: classification tasks in XGLUE are transformed into instruction-based samples with 

annotated categories, while translation pairs in FLORES-101 are reformulated into translation 

instructions paired with corresponding outputs. The proposed ML-IPD method is compared against 

three baselines: (1) Multilingual Direct Fine-Tuning (ML-DFT), which fine-tunes XLM-RoBERTa on 

combined multilingual data using SGD over 100 hours with eight A100 GPUs; (2) Reinforcement 

Learning for Instruction Alignment (RL-IA), which applies policy gradient methods such as A2C to 

optimize instruction execution over 150 hours using 16 A100 GPUs; and (3) Prompt Learning Baseline 

(PL-BL), which employs hand-crafted prompts without distillation, trained over 80 hours with six A100 

GPUs. Model performance is evaluated using accuracy and Mean Reciprocal Rank (MRR). Accuracy 

assesses the proportion of correctly executed instructions in both classification and generation tasks, 

while MRR evaluates the rank quality of predicted outputs by averaging the reciprocal ranks of correct 

answers across all samples [33].  

 

3.2 Experimental Results 

 

Table 1 shows the average instruction alignment accuracy of different methods on 12 languages from 

the XGLUE dataset. The ML-IPD method achieves an average accuracy of 92.3%, which is significantly 

higher than that of ML-DFT (85.6%), RL-IA (88.1%), and PL-BL (87.4%). 

Table 1: Accuracy Comparison on the XGLUE Dataset 

Method Average Accuracy (%) 

ML-DFT 85.6 

RL-IA 88.1 

PL-BL 87.4 

ML-IPD 92.3 

 

For low-resource languages such as Bulgarian and Slovak, ML-IPD shows a more distinct advantage, 
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with improvements of 8.2 and 7.5 percentage points over ML-DFT, respectively. This indicates that ML-

IPD effectively overcomes the challenge of insufficient data in low-resource languages, accurately 

captures language features and instruction patterns, and achieves high-accuracy instruction alignment. 

A statistical analysis of the experimental results, using methods such as the t-test, confirms the 

significance of the accuracy improvement obtained by ML-IPD. 

 

Training cost is measured by the number of GPU hours consumed during the training process [34]. The 

training cost of ML-IPD is reduced by 34% compared to RL-IA and by 22% compared to ML-DFT. ML-

IPD requires only 50 hours of training time and uses four NVIDIA A100 GPUs to achieve satisfactory 

performance. This significantly shortens the training period and reduces hardware usage costs, creating 

favorable conditions for fast model iteration and deployment. These benefits result from the reduced 

dependence on large-scale multilingual data enabled by prompt distillation, as well as the efficient 

knowledge transfer achieved through the hierarchical prompt structure [35,36]. A cost-effectiveness 

analysis quantitatively confirms the advantage of the ML-IPD method in reducing training cost. 

 

Taking the English instruction “Summarize the following article about climate change” as an example, 

ML-IPD is able to generate accurate summaries in multiple languages, including French and Spanish. 

In contrast, the summary generated by ML-DFT in Spanish shows semantic deviation and fails to extract 

key information from the original text. RL-IA, when applied to German, produces incomplete 

instruction execution, with essential points missing from the summary. With the support of the 

hierarchical prompt distillation mechanism, ML-IPD effectively transfers instruction knowledge 

learned in English, accurately interprets user intent in different languages and generates high-quality 

summaries. Through in-depth analysis of specific cases, the advantages of the ML-IPD method are 

demonstrated from the perspectives of semantic understanding and information extraction. 

 

4. Conclusion  
 

This study proposes a multilingual instruction alignment method for large language models based on 

prompt distillation, which effectively integrates cross-lingual transfer and hierarchical distillation 

strategies to enhance alignment performance while reducing training costs. Experimental results on 

XGLUE and FLORES-101 confirm the method’s robustness across diverse languages. Looking forward, 

several directions merit further exploration. The structure of prompt distillation can be refined to 

improve knowledge transfer efficiency, including through more expressive prompt embeddings and 

generative approaches such as variational auto-encoders. In parallel, reducing dependence on labeled 

data via unsupervised or weakly supervised learning, particularly through contrastive objectives, may 

enhance performance in low-resource settings. Finally, the method can be extended to multilingual code 

generation and information retrieval, where accurate prompt modeling may improve task alignment 

across languages. These findings collectively highlight the practical value of prompt distillation in 

multilingual contexts and lay the groundwork for future research in scalable instruction alignment. 
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