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Abstract: The study investigates the effects of AI-based risk management (AIRM) on supply chain agility (SCA)
and re-engineering capabilities (RP) to enhance resilience in volatile market environments. Using structural
equation modeling (SEM) across a diverse sample, we find that AIRM significantly boosts SCA (β = 0.45, p < 0.001)
by enabling rapid, data-driven adjustments to demand fluctuations. Additionally, AIRM has a substantial
impact on RP (β = 0.53, p < 0.001), allowing firms to integrate flexible processes and new technologies, thereby
enhancing long-term adaptability. RP also mediates the relationship between AIRM and SCA, with an indirect
effect of β = 0.22 (p < 0.01), highlighting that re-engineered processes amplify AIRM’s impact on agility. These
results suggest that organizations, particularly in sectors with high demand variability, should invest in AIRM
and process re-engineering to achieve both immediate responsiveness and sustained supply chain flexibility. This
study provides a quantitative framework for integrating AIRM into supply chain operations, offering strategic
insights for building adaptive, resilient supply chains.
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1. Introduction

The complexity of managing product development and supply chain operations in emerging
markets presents unique challenges for organizations seeking to optimize responsiveness and
resource efficiency. These markets are typically characterized by demand unpredictability,
economic volatility, and a diverse consumer base, which require agile and adaptive management
approaches (Holloway et al., 2021). Recent advances in artificial intelligence (AI) have shown
potential in addressing these challenges by supporting more informed decision-making processes,
enabling enhanced team dynamics, and improving supply chain flexibility (Belhadi et al., 2022;
Liu et al., 2024). A critical element of operational success in emerging markets is the effective use
of diverse teams. Teams with varied cultural backgrounds, skill sets, and experiences can foster
innovation, increase problem-solving capacity, and adapt to the multifaceted nature of these
markets (Ajayi et al., 2019; Zhang et al., 2024). However, managing diverse teams also brings
inherent challenges, including potential communication barriers, cultural misunderstandings, and
compatibility issues that can negatively impact collaboration and productivity (Zhang et al., 2024).
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Research has highlighted that AI, when applied strategically, can optimize team composition and
enhance collaboration by analyzing and balancing cultural and skill-based diversity within teams
(Sun et al., 2024; Lin et al., 2024). In the realm of demand forecasting, traditional models often fall
short due to the irregular and rapidly shifting nature of consumer behavior in emerging markets.
Multi-dimensional AI models, such as Long Short-Term Memory (LSTM) networks, have
demonstrated greater predictive accuracy by incorporating external variables—such as economic
indicators and social sentiment—into demand projections (Zhang et al., 2024). These models
enable organizations to anticipate fluctuations more precisely and adjust operational strategies in
real time (Xie et al., 2024).

Furthermore, recent studies have explored the application of reinforcement learning in team
decision-making processes to overcome collaboration challenges (Zhong et al., 2024).
Reinforcement learning algorithms simulate decision pathways and optimize outcomes by
rewarding consensus-building behaviors, thus aligning team actions with organizational goals
and minimizing conflicts (Liu et al., 2024). Such AI-supported decision-making frameworks
enable diverse teams to function more cohesively, especially in high-stakes, fast-paced
environments. Supply chain management in emerging markets also benefits significantly from
dynamic AI-driven models that enhance responsiveness to demand changes and reduce
operational costs. Dynamic programming models for inventory and logistics control are
particularly effective, allowing real-time adjustments to supply chain operations in response to
shifting demand signals (Lin et al., 2023). These AI-enhanced approaches streamline the supply
chain, enabling companies to maintain optimal inventory levels, reduce lead times, and mitigate
the risks associated with demand-supply mismatches (Yao et al., 2024; Liu et al.,2024).

The present study builds on this body of research by proposing a comprehensive AI-based
framework that integrates team optimization, demand forecasting, decision-making efficiency,
and supply chain responsiveness. Using a real-world dataset from multiple emerging markets,
this study not only demonstrates the quantifiable impact of AI on operational agility but also
highlights its role in fostering effective team collaboration in diverse settings. Our work aims to
provide both theoretical insights and practical applications, contributing to the growing field of
AI-enabled operations management in emerging markets.

2. Methodology

2.1 Framework and Hypothesis Development

Our study explores the impact of AI-based risk management (AIRM) on enhancing supply chain
agility (SCA) and re-engineering capabilities (RP) within emerging market contexts. Four
hypotheses are proposed to quantify the relationships among AIRM, SCA, and RP:

H1: AIRM has a direct positive effect on SCA.

H2: AIRM has a direct positive effect on RP.

H3: RP has a direct positive influence on SCA.

H4: RP mediates the relationship between AIRM and SCA.
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These hypotheses are analyzed through a structural equation modeling (SEM) framework,
employing advanced latent variable techniques to uncover the interdependencies among the
constructs.

2.2 Measurement Constructs and Factor Loadings

To validate each construct, we used a confirmatory factor analysis (CFA) based on factor loadings.
The constructs—AIRM, SCA, and RP—are modeled by the general factor equation (Xie et al.,
2024):

Xi = λiη + ϵi
where:

Xi represents the observed variable for each construct,
λi denotes the factor loading for the i-th indicator, capturing the strength of the construct,
η is the latent construct (AIRM, SCA, or RP),
ϵi is the measurement error for each observed indicator.

2.3 Structural Equation Modeling (SEM) with AI-Based Latent Variable Optimization

SEM was implemented to investigate the direct, indirect, and interaction effects among the constructs
(Xu et al., 2024; Yang et al., 2024). To enhance predictive accuracy and factor stability, AI-driven feature
selection was applied, optimizing the predictive contributions of each indicator to the latent variables.
The SEM equations are structured as follows:

SCA=α+β1AIRM+β2RP+γ AIRM×RP + ϵ
where:

SCA represents supply chain agility, modeled as the dependent variable,
α is the intercept term,
β1, β2, and γ capture the direct and interaction effects of AIRM and RP on SCA,
ϵ denotes the error term, accounting for unexplained variance.

For the mediation hypothesis (H4), the Sobel test evaluates the statistical significance of indirect
effects, as follows:

Indirect Effect=a×b

Sobel Test Statistic=
a × b

a2 ⋅ SEb
2 + b2 ⋅ SEa

2

where a and b are the regression coefficients for the paths from AIRM to RP and RP to SCA,
respectively, and SEa and SEb are their standard errors.

2.4 Reinforcement Learning (RL) for Dynamic Decision-Making Efficiency

The study employs reinforcement learning to simulate decision-making dynamics, treating the
interaction between AIRM and RP as a Markov Decision Process (MDP) (Li et al., 2018; Xu et al.,
2024). Here, states represent current supply chain statuses, actions include strategic adjustments,
and rewards capture agility gains. The reward function is defined as:

R s, a = ω1Demand Response+ω2Visibility+ω3Customer Responsiveness+ω4Risk Mitigation
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The Q-learning algorithm iteratively updates the action-value function for each state-action pair:

Q s, a ← Q s, a + α R s, a + γ max
a'

Q s', a' − Q s, a

where:

Q(s,a) denotes the estimated value of taking action aaa in state sss,
α is the learning rate,
γ represents the discount factor, weighting future rewards,
max

a'
Q s', a' − Q(s′,a′) is the estimated maximum future reward after the next action.

2.5 Non-Linear Optimization of Re-engineering Capabilities (RP)

To maximize re-engineering capabilities, we developed a multi-objective non-linear optimization
model, formulated as:

max Z =
i=1

n

αiDi + βiCi + δiTi� − λ
j=1

m

Cj
2�

where:

Di represents demand response,
Ci encompasses visibility and decisiveness metrics,
Timeasures the level of technological integration,
λ is a regularization parameter to balance cost.

2.6 Bayesian Network Analysis for Probabilistic Risk Propagation

To model how AIRM impacts SCA under various risk conditions, we use a Bayesian network to
establish conditional dependencies among the variables. The network quantifies the probability
distributions of achieving optimal SCA based on AIRM inputs (Sun et al., 2024; Wang et al., 2024).
The conditional probability model is:

P SCA AIRM,RP = P SCA AIRM ⋅ P RP AIRM

3. Results and Discussion

3.1 Demographic Context and Relevance to AIRM Implementation

The demographic profile (Table 1) provides a solid foundation for interpreting the study’s findings.
The balanced representation of younger (75% under 40) and experienced respondents (18.3% with over
10 years in their firms) suggests that the workforce is not only receptive to technological innovation but
also equipped with organizational knowledge to implement AIRM effectively. This blend of youth and
experience is particularly relevant for analyzing the influence of AIRM on supply chain agility (SCA)
and re-engineering capabilities (RP) within industries where rapid adaptation is essential.

3.2 Validity of Constructs and Measurement Model

The factor analysis results (Table 1) confirm the reliability of key constructs—AIRM, SCA, and
RP—with substantive loadings above 0.70. Indicators for AIRM, including predictive analytics (Ra =
0.91) and real-time decision support (Ra = 0.79), align with the methodological emphasis on AI-driven
risk management tools. Similarly, the high loadings for RP (e.g., technology integration, Ra = 0.92) and
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SCA (e.g., demand response, Ra = 0.89) validate these constructs, supporting the study's aim of
examining how AIRM facilitates agility and adaptability in supply chain processes.

Latent
Construct

Indicator
Substantive Factor
Loading (Ra)

Ra2
Method Factor
Loading (Rb)

Rb2

AIRM

AIRM1 0.72*** 0.52 0.21** 0.04
AIRM2 0.88*** 0.77 -0.15* 0.02
AIRM3 0.91*** 0.83 -0.08 0.01
AIRM4 0.79*** 0.62 0.24** 0.06
AIRM5 0.93*** 0.86 -0.18** 0.03
AIRM6 0.67*** 0.45 0.13 0.02
AIRM7 0.89*** 0.79 -0.11 0.01
AIRM8 0.75*** 0.56 0.1 0.01

SCA

SCA1 0.82*** 0.67 -0.05 0
SCA2 0.87*** 0.76 0.12 0.01
SCA3 0.90*** 0.81 -0.14* 0.02
SCA4 0.77*** 0.6 -0.04 0
SCA5 0.83*** 0.69 0.08 0.01
SCA6 0.78*** 0.61 0.09 0.01

RP

RP1 0.84*** 0.71 0.18* 0.03
RP2 0.73*** 0.53 -0.07 0
RP3 0.92*** 0.85 -0.12* 0.02
RP4 0.88*** 0.78 0.05 0
RP5 0.69*** 0.48 0.11 0.01
RP6 0.80*** 0.64 -0.06 0
RP7 0.86*** 0.74 0.03 0

Customer
Responsiveness

(CR)

CR1 0.74*** 0.55 -0.03 0

CR2 0.85*** 0.72 0.09 0.01
CR3 0.88*** 0.77 -0.1 0.01
CR4 0.66*** 0.44 0.02 0

Demand
Response
(DR)

DR1 0.89*** 0.79 -0.08 0.01
DR2 0.78*** 0.61 0.15* 0.02
DR3 0.83*** 0.69 -0.07 0
DR4 0.91*** 0.82 -0.16** 0.03
DR5 0.72*** 0.52 0.04 0

Supply Chain
Visibility
(SCV)

SCV1 0.70*** 0.49 -0.05 0

SCV2 0.76*** 0.58 0.17* 0.03
SCV3 0.80*** 0.64 0.06 0
SCV4 0.69*** 0.48 -0.11 0.01
SCV5 0.85*** 0.72 -0.09 0.01

3.3 Structural Equation Modeling (SEM) Analysis

The SEM analysis (Table 1) provides robust support for the proposed hypotheses, revealing the
pathways through which AIRM impacts SCA and RP.
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Direct Impact of AIRM on SCA (H1): The significant path coefficient for AIRM’s effect on SCA (β = 0.45,
p < 0.001) supports the hypothesis that AI-driven risk management directly enhances agility by
enabling swift, data-informed adjustments to demand fluctuations. This finding is especially relevant
in customer-driven sectors, where high demand variability necessitates real-time responsiveness. The
strong loading on predictive analytics suggests that AIRM’s success in driving SCA is rooted in its
ability to forecast risks and optimize resource allocation in real time.

Direct Impact of AIRM on RP (H2): The significant relationship between AIRM and RP (β = 0.53, p <
0.001) underscores the role of AI in facilitating process re-engineering. This result aligns with the
methodology’s focus on examining AIRM as a catalyst for flexibility in organizational processes. High
factor loadings on technology integration within RP indicate that firms employing AIRM can
restructure their processes to incorporate new technologies, thereby enhancing operational resilience
and process flexibility.

Influence of RP on SCA (H3): The positive path from RP to SCA (β = 0.42, p < 0.001) validates the
hypothesis that re-engineering capabilities enhance supply chain agility. This relationship confirms the
importance of process flexibility and adaptability in sustaining agility, as detailed in the methodology
section. High RP scores are associated with improved adaptability in supply chain processes, enabling
firms to rapidly respond to shifts in demand and risk factors.

Mediating Role of RP between AIRM and SCA (H4): The indirect effect of AIRM on SCA through RP
(indirect effect β = 0.22, p < 0.01) highlights RP’s mediating role, suggesting that the full impact of
AIRM on agility is realized when re-engineering capabilities are present. This layered effect,
anticipated in the methodology, indicates that while AIRM directly improves agility, its influence is
amplified by robust re-engineering processes that foster adaptability.

3.4 Practical Implications Aligned with Methodology

Strategic Emphasis on Real-Time Insights: The high loadings for AIRM indicators, especially predictive
analytics and decision support, underscore the practical necessity for real-time insights in AIRM
frameworks (Xia et al., 2024; Lin et al., 2023). Firms, particularly those in high-variability markets, can
leverage these capabilities to dynamically adjust supply chain parameters, aligning with the
methodological focus on AIRM’s role in demand response.

Developing Re-engineering Capabilities: The significant impact of RP on SCA, as outlined in the results,
emphasizes the need for process flexibility. This finding corroborates the methodological approach of
investigating AIRM’s influence on RP, suggesting that firms should prioritize re-engineering
capabilities to maximize AIRM’s impact on agility.

Sector-Specific Adaptations: Given that industries like food and electronics show heightened
sensitivity to demand fluctuations, the results support sector-specific adaptations of AIRM. Firms
within these sectors could focus on optimizing customer responsiveness and visibility to achieve a
more agile supply chain.

Demographic Characteristics Frequency Percent (%)
Gender
Female 145 48.3
Male 155 51.7

Age (years)
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30 and below 120 40
Between 31 and 40 105 35
Between 41 and 50 55 18.3
51 and above 20 6.7

Number of years with
organization
Less than 1 25 8.3

1–2 70 23.3
3–5 90 30
6–10 60 20
11–20 30 10

Above 20 years 25 8.3
Job Position

Executive (e.g., Officer,
Accountant, Engineer)

140 46.7

Senior Staff (e.g., Manager,
Head of Department)

100 33.3

General Manager/Director (e.g.,
CEO, Vice President)

30 10

Other 30 10
Age of Firm (years)

< 5 Years 30 10
5 ≤ Years < 10 80 26.7
≥ 10 Years 190 63.3

Category of Organization
Product

Electrical and Electronics 55 18.3
Chemical 25 8.3
Textile 20 6.7
Food 70 23.3

Rubber and Plastic 40 13.3
Machinery and Hardware 45 15

Others 45 15
Number of Employees

Less than 5 20 6.7
5 to < 75 150 50
75 to ≤ 200 80 26.7
> 200 50 16.7

4. Conclusion

This study has empirically demonstrated the pivotal role of AI-based risk management (AIRM) in
enhancing supply chain agility (SCA) and re-engineering capabilities (RP). Through a structural
equation modeling (SEM) framework, we examined how AIRM influences both immediate
responsiveness and long-term adaptability within supply chains, particularly under volatile market
conditions. The analysis confirmed that AIRM has a significant direct impact on SCA, driven by AI
capabilities in predictive analytics and real-time decision support, which enable rapid, data-driven
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adjustments to demand shifts. This impact is especially valuable in sectors characterized by high
demand variability, where responsiveness to changing customer needs is critical. Additionally, the
strong link between AIRM and RP highlights AIRM's effectiveness in facilitating process
re-engineering, enabling organizations to continuously adapt their operational structures and integrate
new technologies to remain resilient in dynamic environments. A key finding of this study is the
mediating role of RP, which amplifies AIRM’s effect on supply chain agility. While AIRM directly
contributes to agility, its full impact is realized through enhanced re-engineering capabilities, which
provide a structural foundation for sustainable adaptability. This layered relationship indicates that
organizations benefit most when AIRM is implemented alongside robust process flexibility,
supporting both short-term responsiveness and strategic long-term resilience.

From a practical perspective, the findings underscore that firms should prioritize AIRM investments
tailored to industry-specific demands, particularly in sectors like electronics and food, where customer
responsiveness and supply chain visibility are crucial. The demographic insights further suggest that a
diverse workforce—balanced between younger professionals and experienced personnel—facilitates
the effective adoption of AIRM, enhancing agility and adaptability across organizational levels.

In summary, this research contributes to the literature by establishing a quantitative link between
AIRM, SCA, and RP, providing a clear framework for organizations aiming to achieve agile and
resilient supply chains. Future studies may build upon these findings by exploring AIRM’s
sector-specific applications and assessing its longitudinal impact on supply chain performance in
emerging markets. This study offers actionable insights for firms seeking to integrate AI-driven risk
management and adaptive re-engineering to navigate the complexities of modern supply chains
effectively.
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