
 

Journal of Theory and Practice of Engineering Science           ISSN: 2790-1513
International Journal of Advance in Applied Science Research        ISSN: 3065-9965

www.h-tsp.com

  
  
   

 

                       
Volume 4 Issue 6, 2025

  

  
  

  

  
  

  

  

 
  

Design of a Python-Based Data Crawling 

System—Taking House Information  

Crawling as an Example 
  

Hongxia Mao 
 

School of Computer and Software, Jincheng College of Sichuan University, Chengdu 611731, Sichuan, China 

 

Abstract: The widespread application of Internet technology has led to an explosion of online resources, making it 

extremely time-consuming and labor-intensive to locate desired data within massive datasets. Housing information is one of 

the hot topics of national concern; by employing web crawler technology, housing information from major platforms can be 

obtained quickly and accurately. This paper designs a housing information data crawling system using Python combined 

with crawler technology, creating modules such as a URL manager, web page downloader, web page analyzer, data 

collector, and data saver. Through system operation, housing information and images from the target website were 

successfully saved. 

 

Keywords: Python; Data crawling; Anti-crawling strategies.  

 

1. INTRODUCTION 
 

With the rapid development of Internet technology, information technology has advanced swiftly, especially the 

data resources on the Internet, which have grown and accumulated at an enormous rate. The explosive growth of 

online resources makes it increasingly difficult to quickly and accurately find valuable information within massive 

datasets. Therefore, web crawlers have emerged, capable of accurately and efficiently extracting required data 

from target websites according to specific needs. Data crawling imposes some burden on websites, so different 

sites have adopted corresponding anti-crawling strategies. A data crawling system must periodically analyze the 

target website to study its anti-crawling mechanisms, ensuring the system can operate normally and obtain the 

required data. 

 

At present, housing information is a key topic of public concern; people are highly interested in the prices of new 

homes, second-hand homes, and rentals. However, major platforms have data silos and cannot cover all housing 

information, so building a system capable of crawling housing data from the web is particularly important. This 

paper uses Python as the programming language for the data-collection system to scrape housing information 
online. The scientific use of big data technology can reflect the advanced nature of computer information methods 

at the same time to strengthen the effectiveness of information security management, making the work carried out 

more smoothly, to provide reliable protection for computer information security. Tu (2025) introduced Log2Learn, 

an intelligent log analysis framework for real-time network optimization [1]. In recommendation systems, Wang 

(2025) proposed a joint training method for propensity and prediction models using targeted learning to handle 

missing-not-at-random data [2]. Healthcare AI innovations include Ding and Wu's (2024) systematic review of 

self-supervised learning for ECG/PPG signal processing [3], and Restrepo et al.'s (2024) multimodal deep learning 

approach with vector embedding alignment for low-resource healthcare settings [4]. For NLP, Yang et al. (2025) 

developed a GAN-based extractive text summarization model combining transductive and reinforcement learning 

[5]. Visual analytics advancements feature Xie and Chen's (2025) CoreViz, a context-aware reasoning engine for 

BI dashboards [6]. Zhu (2025) presented TraceLM for temporal root-cause analysis using contextual embedding 

language models [7], while Zhang (2025) addressed deployment safety with SafeServe for multi-app monetization 

platforms [8]. In digital content, Hu (2025) created UnrealAdBlend for immersive 3D ads via game engine 

pipelines [9]. Sustainability research by Wu et al. (2025) linked supply chain digitalization and energy efficiency 

to carbon neutrality [10]. Domain adaptation techniques include Peng et al.'s (2022) RAIN framework for 

black-box scenarios [11]. Anomaly detection is extensively explored: Zhang et al. (2025) investigated ML-based 

methods for biomechanical big data [12]; Wang (2025) built a knowledge graph-based clinical trial anomaly 
detection system [13]; Qi (2025) designed interpretable slow-moving inventory forecasting with hybrid neural 

networks [14]; and Huang and Qiu (2025) implemented LSTM-based abnormal electricity usage detection in smart 

meters [19]. Chen (2023) demonstrated data mining applications in general data analysis [20]. Low-code/SME 

digitalization was advanced by Fang's (2025) microservice-driven modular platform [15], while spatiotemporal 

41



 

Journal of Theory and Practice of Engineering Science           ISSN: 2790-1513
International Journal of Advance in Applied Science Research        ISSN: 3065-9965

www.h-tsp.com

  
  
   

 

                       
Volume 4 Issue 6, 2025

  

  
  

  

  
  

  

  

 
  

analytics featured Li's (2025) GIS-integrated U-Net for automated land encroachment detection [16]. Lin (2025) 

examined generative AI's role in proactive incident management [17], and Li (2025) optimized emergency 

response with AD-STGNN for urban fire vehicle dispatch [21]. 

 

2. WEB-CRAWLER PRINCIPLES 
 

A web crawler is a program whose main purpose is to download web pages from the Internet to the local machine 

and extract relevant data. It can automatically browse information on the web and, according to specified rules, 

download and extract the required data. The architecture of a basic web crawler is shown in Figure 1. 

 
Figure 1: Architecture of a Basic Web Crawler 

URL Manager: Manages the URLs to be crawled, preventing duplicate and circular crawling. 

 

Web Downloader: The component that downloads web pages, used to fetch the web page corresponding to a given 

URL from the Internet to the local machine; it is one of the core parts of the crawler. 

 

Web Parser: The component that parses web pages, used to extract valuable data from them; it is another core part 

of the crawler. 

 

Output Manager: The component that stores information, used to output the parsed content to files or a database. 

 

3. HOUSING-DATA CRAWLER SYSTEM DESIGN 
 

This paper targets Q for housing-data crawling. The crawler system will collect the site links for each city on Q, 

along with basic information on second-hand homes, rentals, and new homes, and will save the scraped housing 

data. 

 

3.1 Web URL Management Analysis 

 
Open Q in Google Chrome, enter the second-hand home section, click on the location to obtain the URL for the 

corresponding city, then try switching cities. Observation shows that the URLs for second-hand home pages 

follow a pattern, as shown in Figures 2 and 3: 

 
Figure 2: Beijing Region URL 

 
Figure 3: Foshan Region URL 

When the city is changed, the site’s URL pattern is found to be: https://city-pinyin.qfang.com/sale. 

42



 

Journal of Theory and Practice of Engineering Science           ISSN: 2790-1513
International Journal of Advance in Applied Science Research        ISSN: 3065-9965

www.h-tsp.com

  
  
   

 

                       
Volume 4 Issue 6, 2025

  

  
  

  

  
  

  

  

 
  

 

Each city page on Q displays at most 30 housing listings. Clicking “Next Page” changes the URL according to the 

following rule: after entering a city, the URL is http://foshan.qfang.com/sale, 

 

Clicking on page 2, the URL is: http://foshan.qfang.com/sale/f2. As shown in Figure 4. 

 
Figure 4: Page 2 of Foshan property listings 

Therefore, the construction rule for the URL of page n is: 

 

http://foshan.qfang.com/sale/fn. 

 

Thus, the code for paginating the property listing URLs on Q Fang is: 

 

pre_url = ’http://foshan.qfang.com/sale/f’ 

for x in range(1,11): 

        url = pre_url + str(x) 

 

3.2 Web Page Download 

 

Requests is a library commonly used when writing crawler code. Requests inherits all features of urllib2. It 

supports HTTP persistent connections and connection pooling, session persistence via cookies, file uploads, 

automatic determination of response content encoding, internationalized URLs, and automatic encoding of POST 

data. The code for downloading web pages using Requests is as follows: 

 
pre_url = ’http://foshan.qfang.com/sale/f’ 

for x in range(1,11): 

        url = pre_url + str(x) 

        html = requests.get (url, headers=headers) 

 

3.3 Web Page Parsing 

 

Using Chrome’s developer tools, you can locate the data to be scraped within the page source, extract the XPath 

path, as shown in Figure 5. 

 
Figure 5: Front-end code for website housing information 

Call the spider function to obtain the housing information for the corresponding page; the code is shown in Figure 
6: 

43



 

Journal of Theory and Practice of Engineering Science           ISSN: 2790-1513
International Journal of Advance in Applied Science Research        ISSN: 3065-9965

www.h-tsp.com

  
  
   

 

                       
Volume 4 Issue 6, 2025

  

  
  

  

  
  

  

  

 
  

 
def spider(url): 

        ...crawler function... 

        selector = download(url) 

        house_list = selector.xpath("//#[@id=’cycleListings’]/ul/li") 

                xiaoqu = house.xpath(’div[1]/p[1]/a/text()’)[0] 

                huxing = house.xpath(’div[1]/p[2]/span[2]/text()’)[0] 

                mianji = house.xpath(’div[1]/p[2]/span[4]/text()’)[0] 

                weizhi = house.xpath(’div[1]/p[3]/span[2]/a[1]/text()’)[0] 

                #construct the detail page URL 

                house_url = (’http://beijing.qfang.com’ 

                                        + house.xpath(’div[1]/p[1]/a/@href’)[0]) 
                sel = download(house_url) 

                house_year = sel.xpath("//div[@class=’housing-info’]/ul/li[2]/div/ul/li[3]/div/text()")[0] 

                mortgage_info = sel.xpath("//div[@class=’housing-info’]/ul/li[2]/div/ul/li[5]/div/text()")[0] 

                #construct the data items to be written to the file 

                <item = [community, layout, area, location, total_price, house_year, mortgage_info]</item> 

                ##Write to file 

                data_writer (item) 

                print(’Fetching’, xiaoqu) 

 
Figure 6: House information scraping code 

3.4 Output Saving 

 
Save the scraped housing information to a CSV file named afang_foshan, as shown in Figure 7 below. 

 
def data_writer(item): 

        writer.writerow(item) 

                ## ##  

 
Figure 7: Code for Saving Housing Listing Information 

Save the house image information in binary format, as shown in Figure 8 below. 

 
def image_saver(url, xiaoqu): 

        Image Saving Function 
        param url: image web page URL 

        param xiaogy: image neighborhood name 

        :return: None 

1 ~5 

        img = requests.get (url, headers = headers) 

        with open(’./Qfang_image/{}.jpg’.format(xiaoqu),’wb’) as f: 

                    f.write (img. content) 

 
Figure 8: Code for saving listing images 

4. ANTI-SCRAPING COUNTERMEASURES 
 

Websites often implement anti-scraping mechanisms against web crawlers; the most common techniques are 

Header-based anti-scraping and user-behavior-based anti-scraping. 

 

Header-based anti-scraping is the most prevalent strategy. Many sites inspect the user-agent in the Headers. To 

counter this, the crawler code in this paper adds Headers, assigning the browser’s user-agent to the crawler’s 

Headers so the server can identify the client’s OS and version, CPU type, browser and version, rendering engine, 

language, plugins, etc., thereby bypassing the anti-scraping measures. 
 

The target site detects user behavior—e.g., the same account performing identical actions repeatedly in a short 

time—to identify crawlers. To address this, the crawler code introduces a random delay of several seconds 

44



 

Journal of Theory and Practice of Engineering Science           ISSN: 2790-1513
International Journal of Advance in Applied Science Research        ISSN: 3065-9965

www.h-tsp.com

  
  
   

 

                       
Volume 4 Issue 6, 2025

  

  
  

  

  
  

  

  

 
  

between requests. 

 

5. CONCLUSION 
 

This paper studies the design of a data-scraping system using Python. By leveraging crawler technologies and 

implementing the corresponding code, it scrapes housing data from the  website. From URL management, page 

downloading and parsing, data extraction and storage, image saving, to handling anti-scraping mechanisms, the 

entire data-scraping system is realized. 

 

REFERENCES 
 

[1] Tu, T. (2025). Log2Learn: Intelligent Log Analysis for Real-Time Network Optimization. 

[2] Wang, Hao. "Joint Training of Propensity Model and Prediction Model via Targeted Learning for 

Recommendation on Data Missing Not at Random." AAAI 2025 Workshop on Artificial Intelligence with 

Causal Techniques. 2025. 

[3] Ding, Cheng, and Chenwei Wu. "Self-Supervised Learning for Biomedical Signal Processing: A Systematic 

Review on ECG and PPG Signals." medRxiv (2024): 2024-09. 

[4] Restrepo, David, et al. "Multimodal Deep Learning for Low-Resource Settings: A Vector Embedding 

Alignment Approach for Healthcare Applications." medRxiv (2024): 2024-06. 

[5] Yang, Jing, et al. "A generative adversarial network-based extractive text summarization using transductive 

and reinforcement learning." IEEE Access (2025). 

[6] Xie, Minhui, and Shujian Chen. "CoreViz: Context-Aware Reasoning and Visualization Engine for Business 

Intelligence Dashboards." Authorea Preprints (2025). 

[7] Zhu, Bingxin. "TraceLM: Temporal Root-Cause Analysis with Contextual Embedding Language Models." 

(2025). 

[8] Zhang, Yuhan. "SafeServe: Scalable Tooling for Release Safety and Push Testing in Multi-App Monetization 
Platforms." (2025). 

[9] Hu, Xiao. "UnrealAdBlend: Immersive 3D Ad Content Creation via Game Engine Pipelines." (2025). 

[10] Wu, W., Bi, S., Zhan, Y., & Gu, X. (2025). Supply chain digitalization and energy efficiency (gas and oil): 

How do they contribute to achieving carbon neutrality targets?. Energy Economics, 142, 108140. 

[11] Peng, Qucheng, et al. "RAIN: regularization on input and network for black-box domain adaptation." arXiv 

preprint arXiv:2208.10531 (2022). 

[12] Zhang, Shengyuan, et al. "Research on machine learning-based anomaly detection techniques in 

biomechanical big data environments." Molecular & Cellular Biomechanics 22.3 (2025): 669-669. 

[13] Wang, Y. (2025, May). Construction of a Clinical Trial Data Anomaly Detection and Risk Warning System 

based on Knowledge Graph. In Forum on Research and Innovation Management (Vol. 3, No. 6). 

[14] Qi, R. (2025). Interpretable Slow-Moving Inventory Forecasting: A Hybrid Neural Network Approach with 

Interactive Visualization. 

[15] Fang, Z. (2025). Microservice-Driven Modular Low-Code Platform for Accelerating SME Digital 

Transformation. 

[16] Li, B. (2025). GIS-Integrated Semi-Supervised U-Net for Automated Spatiotemporal Detection and 

Visualization of Land Encroachment in Protected Areas Using Remote Sensing Imagery. 

[17] Lin, Tingting. "The Role of Generative AI in Proactive Incident Management: Transforming Infrastructure 
Operations." 

[18] Huang, Jingyi, and Yujuan Qiu. "LSTM‐Based Time Series Detection of Abnormal Electricity Usage in 

Smart Meters." (2025). 

[19] Chen, Rensi. "The application of data mining in data analysis." International Conference on Mathematics, 

Modeling, and Computer Science (MMCS2022). Vol. 12625. SPIE, 2023. 

[20] Li, Binghui. "AD-STGNN: Adaptive Diffusion Spatiotemporal GNN for Dynamic Urban Fire Vehicle 

Dispatch and Emergency." (2025). 

45


